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ABSTRACT 

Heavy inorganic oxide and alkali-halide crystals, which previous experimental research 

has indicated to have fast neutron detection efficiencies well over 40%, were investigated 

for potential use as highly efficient gamma-neutron radiation detectors. The Monte Carlo 

N-Particle radiation transport code (MCNP) was used to characterize the radiation 

interactions in a candidate set of crystals, including Bismuth Germanate (BGO), Lead 

Tungstate (PWO), Cadmium Tungstate (CWO), Zinc Tungstate (ZWO), Cerium-doped 

Lutetium-Gadolinium Orthosilicate (LGSO:Ce), and Cerium doped Lutetium-Aluminum 

Garnet (LuAG:Ce). Specific detection systems proposed and studied in the laboratory 

were also modeled and assessed.  

 The candidate crystal set proved to be most susceptible to energy deposition from 

incident gamma quanta below 0.7 MeV and above 4 MeV, most likely due to 

photoelectric absorption and pair production, respectively. Inelastic and elastic scattering 

proved to be about 98% of the total neutron interactions from a Plutonium Beryllium 

(PuBe) neutron source, about a fourth of which were inelastic scattering. Various 

components of the detector configuration were evaluated in detail. The crystal 

dimensions and moderation especially affected detector efficiency, which showed 

potential for detection efficiencies comparable to experimental data.  
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I. INTRODUCTION 

A. MOTIVATION 

Since 2002, the National Security Strategy of the United States of America has 

called for “proactive counterproliferation efforts” and “strengthened nonproliferation 

efforts to prevent rogue states and terrorists from acquiring materials, technologies, and 

expertise necessary for weapons of mass destruction (WMD)” [1]. While the nuclear 

threat from major world powers has decreased significantly since the Cold War Era, the 

threat from rogue states and terrorists has come increasingly into focus in the past decade 

[2]. Part of that effort is the creation of the Defense Threat Reduction Agency (DTRA), a 

combat support agency responsible to the Assistant to the Secretary of Defense for 

countering nuclear, chemical, biological, and high explosive WMD [3]. In this research, 

the Naval Postgraduate School (NPS) is coming alongside DTRA in its efforts to develop 

novel methods and applications for detection of nuclear weapons and materials. This 

thesis will address a specific application for fast neutron detection.  

The research focus is the use of heavy, inorganic oxide solid-state scintillation 

detectors for the detection of a mixed radiation source of fast neutrons and gamma rays. 

Experiments with inorganic crystals with high-atomic number constituents have 

unusually high detection efficiency of fast neutrons as a result of inelastic scattering [4]. 

Much work has been done both at NPS and the Institute of Scintillation Materials (ISM) 

of the National Academy of Sciences of Ukraine (NASU) to demonstrate gamma 

detection efficiency up to 80% and fast neutron detection efficiency well above 40% for 

heavy oxide inorganic crystals, while organic and liquid-based scintillators typically have 

fast neutron detection efficiencies below 10% [5]. This significant increase in detection 

efficiency of both high energy gamma quanta and fast neutrons by the same detector 

would greatly increase the detector sensitivity and significantly lower its size and cost 

[4]. The particular crystals in this study are Bismuth Germanate (BGO), Lead Tungstate 

(PWO), Cadmium Tungstate (CWO), Zinc Tungstate (ZWO), Cerium-doped Lutetium-

Gadolinium Orthosilicate (LGSO:Ce), and Cerium doped Lutetium-Aluminum Garnet 

(LuAG:Ce), as summarized in Table 1. The applications for detectors based on such 
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scintillator crystals are broad, including radioactive material detection at international 

border checkpoints, shipping ports, and major, high-occupancy events. Detection systems 

currently being used to detect radioactive material (RM) rely on bulky assemblies 

consisting of components such as organic scintillator detectors for gamma detection and 

3He detectors inside polyethylene moderators for neutron thermalization and detection 

[4]. These systems have several disadvantages. 3He-based detectors have very low 

detection efficiency (around 0.8%) for fast neutrons without moderators, around 10% 

detection efficiency with moderation, and require detector panels that are large in volume 

and mass for registration of weak neutron fluxes [4]. The use of heavy, inorganic 

scintillator crystals for direct detection of fast neutrons, however, shows potential for 

more efficient, less expensive, and more portable RM detection systems.  

Table 1.   Candidate set of scintillator crystals obtained from the Institute for 
 Scintillation Materials, Ukraine 

Scintillator 
material 

Chemical 
Formula 

Abbreviation Dimensions 
(mm) 

Activated Density 
(g/cc) 

Bismuth 
Germanate 

Bi4Ge3O12 BGO 20x30x11 No 7.13 

Lead 
Tungstate 

PbWO4 PWO 22x22x10 No 8.28 

Cadmium 
Tungstate 

CdWO4 CWO 20x20x20 No 7.9 

Zinc 
Tungstate 

ZnWO4 ZWO 20x20x20 No 7.87 

Lutetium-
Gadolinium 
Orthosilicate 

Lu2Gd2SiO5(Ce) LGSO:Ce 
 

20(dia) x 10 Yes, 0.3% 
Cerium 

7.0 

Lutetium-
Aluminum 
Garnet 

Lu3Al5O12(Ce) LuAG:Ce 20(dia) x 10 Yes, 
0.001% 
Cerium 

6.73 

 

Although significant empirical data for the response of such crystals has been 

accumulated in the laboratory, there has been less effort to understand the radiation-

scintillator interaction processes for this novel approach to fast neutron detection through 

state-of-the-art Monte Carlo simulation and modeling methods.  
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B. APPROACH 

While previous work in this effort, by both ISM-NASU and NPS, has been 

predominantly experimental, this thesis is an investigation of the candidate set of crystals 

from a computational approach. The designated tool is the Monte Carlo N-Particle 

(MCNP) radiation transport code [6], which uses statistical characterization of radiation 

transport processes combined with libraries of atomic and nuclear data to simulate 

physical phenomena, including the relevant radiation-matter interactions. All 

computational work is done with MCNP6, Version 1.0. MCNP is widely considered the 

international “gold standard” for particle radiation transport codes in diverse areas, 

including nuclear physics, commercial industries, and medical science.  

The approach taken is to model specific lab set ups and experiments done both at 

NPS and in Ukraine to verify and develop crystal-specific data and gain a more robust 

understanding of the physical processes taking place in the crystals. This includes the 

creation of specific experimental set ups, including geometrical dimensions, source 

specifications, and material description. Once the radiation transport simulation has run, 

certain calculations require post-processing of the output file to extract desired data.  

C. RESEARCH OBJECTIVES AND GOALS 

The over-arching objective of this research effort is to understand how these 

heavy oxide and alkali-halide crystals react to a mixed radiation source of neutrons (fast 

and thermal) and gammas. In an attempt to develop this understanding, this thesis will 

address the following. 

1. What radiation-matter interactions occur inside the crystals?  

Previous experiments on these crystals have produced data that indicate high 

detection efficiencies, but the physical mechanisms by which the radiation is detected 

have only been inferred from theory. In a computational model, what interactions occur 

between fast neutrons and the crystals? What interactions occur been thermal neutrons 

and the crystals? What interactions occur between gamma rays and the crystals? How 

many collisions are there? How do these interactions depend on the energy of the incident 

radiation? Of these interactions, which deposit the most energy?  
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2. Calculate energy deposition. 

How much energy was deposited in previous experiments at NPS? How does the 

energy deposition from each radiation source depend on energy of incident radiation?  

3. What components of the proposed detection system optimize detection 
efficiency of a mixed gamma-neutron radiation source? 

What role does shielding play in neutron detection? What role does neutron 

moderation play? How do the scintillator crystal dimensions affect their overall 

effectiveness as neutron detectors? 

4. What detection efficiency is possible for each of these crystals? 

For each configuration, the ratio of particles that interact with the scintillator 

material to the total number of particles entering the crystal material gives an estimate of 

the potential intrinsic efficiency for each crystal. This estimation makes a critical 

assumption that every incident particle that has an interaction produces a detectable 

signal. Because this is not always the case, this estimate serves as an upper limit to the 

achievable intrinsic counting efficiency.  
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II. BACKGROUND PHYSICS 

When radiation interacts with the material inside a scintillation detector, energy is 

transferred to the material through various interaction mechanisms. The energy deposited 

into the scintillating material in these processes produces a signal at the detector output. 

Radiation exists in many forms, each with its own set of interaction mechanisms. The 

main forms of radiation emitted from typical fissile nuclear materials are gamma quanta 

and neutrons, both of which, experimental analysis indicate, can be detected within the 

same heavy-oxide detector [4]. This chapter will discuss relevant interaction mechanisms 

associated with gamma and neutron radiation and the process by which those interactions 

are detected in a scintillator.  

A. GAMMA RADIATION  

Gamma rays are a form of high energy electromagnetic radiation created in a 

nuclear process or transition. Gamma radiation from the decay of radioactive materials 

typically ranges up to a few MeV in energy, with no theoretical upper limit. Unlike 

charged particles, gamma radiation does not transfer energy continuously, but rather 

scatters off or becomes absorbed through individual ionization and excitation events as it 

travels through a material [9]. As the gamma rays enter a scintillator medium, the fraction 

that are absorbed by one of these events is defined by 

 ( ) 1 de      (1) 

where µ  is the summation of linear attenuation coefficients  ,  ,      in, ( 1) ,cm   from 

three major interactions as the rays travel a distance d into the scintillator [9]. The three 

interactions for those coefficients are photoelectric absorption, Compton scattering, and 

pair production, respectively, each of which is discussed shortly. The values of these 

coefficients are dependent on not only the energy of the incident gamma photon, but also 

the physical properties of the scintillator material.  
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1. Photoelectric Absorption  

The photoelectric effect is a process by which a gamma ray becomes absorbed by 

a bound electron. In this process, all of the gamma energy is transferred into overcoming 

the bound state of the electron and additional incident gamma energy converts to the 

kinetic energy of the freed electron, shown as 

 be
E hv E     (2) 

where v is the frequency of the incoming gamma and bE  is the energy of the bound state 

of the electron. Furthermore, the vacancy left by the freed electron is quickly filled by 

surrounding free-electrons and/or by the reshuffling of electrons in other shells of the 

atom, often generating characteristic X-ray photons in the process [9]. Photoelectric 

absorption is the dominant gamma-matter interaction at low photon energies, which will 

be below roughly 0.75 MeV for the heavy oxide crystals under investigation. The 

probability of this interaction also has a strong dependence on atomic number, so this 

mechanism is expected to be a dominant event in this candidate set of high-Z crystals at 

energies below 2 MeV [10]. 

2. Compton Scattering  

When a gamma ray photon elastically collides with a bound electron whose 

energy is extremely low compared to that of the gamma, the Compton effect takes place 

[9]. Unlike photoelectric absorption, not all of the photon energy is used up; rather a 

portion of it accelerates the electron as the gamma ray scatters off with a reduced energy  

 
 1  1

E
E

cos 
 


  (3) 

where   is a ratio of the initial photon energy to the electron rest-mass energy and   is 

the angle the photon scatters measured from its original direction [9]. 

The cross section for Compton scattering by electrons in scintillator atoms 

depends on the number of available electrons in the medium and, therefore, increases 

linearly with Z [10]. While the probability of Compton scattering increases with 
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decreasing gamma energy, this trend is much stronger with photoelectric absorption at 

lower energies and so the latter is expected to dominate in this part of the energy 

spectrum (see Figure 1). 

 

Figure 1.  Cross sections for gamma interactions with sodium iodide vs. 
 incident gamma energy, from [9].  

3. Pair Production (high E, >1 MeV) 

When the incident energy of the gamma-ray photon exceeds twice the rest-mass 

energy of an electron (1.02 MeV), there is a possibility that the gamma is completely 

absorbed in the creation of an electron and a positron through the phenomenon of pair 

production (i.e., the creation of an electro-positron pair). In this event, which is almost 

always confined to the coulomb field of a nucleus, excess energy from the incident 

gamma is converted into the kinetic energy shared by the pair according to  



 8

 2pp eT E E    (4) 

where ppT  is the kinetic energy of the pair and eE  is rest-mass energy of an electron [8]. 

As the resultant positron loses energy in the medium it will eventually annihilate with 

another electron and produce two secondary annihilation photons, which can affect the 

response of the detector [10].  

While there is no simple equation for the probability of pair production, there are 

certain trends as depicted in Figure 1. Most notable is that, though pair production 

becomes possible at incident energies greater than 1.02 MeV, its cross section rises 

quickly with increasing energy and only becomes significant at several MeV. As seen in 

Figure 2, the energy dependence itself is heavily affected by the atomic number of the 

scintillator crystal.  

 

Figure 2.  Behavior of gamma interaction with matter with respect to  
Z number and incident gamma energy. Solid lines mark equal probability 

 of processes, from [10].  

The attenuation coefficients for each of these gamma-matter interactions vary 

based on the physical properties of the scintillation crystals and the energy of the incident 

radiation. Each interaction yields secondary electrons and residual photons that are 

related to the incident energy E in different ways, resulting in multiple absorption 

interactions [9]. In general, the approach to obtain increased detection in a scintillation 
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counter is to increase the dimensions of the absorbing crystal in order to obtain optimal 

absorption efficiency.  

B. NEUTRON RADIATION 

Neutron radiation is sectioned into four main categories based on energy, as 

shown in Table 2. Neutrons do not carry charge and, therefore, do not interact with the 

electron clouds of the atoms of the absorbing material in contrast with some other types 

of radiation, but rather pass through to interact with the atomic nuclei [9]. There are two 

primary possibilities for this interaction: absorption and scattering.  

Table 2.   Categories of neutron radiation by energy, from [11]. 

Nomenclature Energy 

Thermal ≈ 0.025 eV 

Epithermal ~ 1 eV 

Slow ~ 1 keV 

Fast = 100 keV–10 MeV 

 

1. Neutron Absorption 

The detection of slow or thermal neutrons is chiefly done through the process of 

neutron absorption. At sufficiently low neutron energies (typically in the slow neutron 

region or below), there is a significant probability that the nuclei absorbsthe neutron. The 

result is a new excited recoil nucleus and a series of processes that are fundamental to the 

detection of the original incident neutron. The most probable neutron-induced reaction 

for most materials, especially those heavy nuclei constituents, is radiative capture 

reaction ( , )n  . This reaction typically produces gamma radiation that can be detected 

directly. The decay of the resulting excited nucleus emits several particles, including 
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gamma-quanta, beta particles, alpha partcles, and protons. These emissions can also 

provide for indirect detection of neutrons [10].  

Additionally, detection of slow neutrons can also be done through neutron-

induced reactions that emit heavier, charged particles such as alpha particles. With very 

heavy nuclei (Z > 90), neutron capture can erupt in nuclear fission and the highly kinetic 

fissile fragments are detected. When slightly lighter nuclei, such as those that comprise 

the crystal set under investigation, absorb a neutron they can undergo nuclear reactions 

that emit charged particles, typically alpha particles [9]. Two well-known reactions of 

this sort that are often used in scintillation detection of slow neutrons are 

 
10 7( , )B n Li   (5) 

and 

 
6 3( , ) ,Li n H   (6) 

the cross sections of which are plotted as a function of neutron energy in Figure 3 [9, pp. 

36–38]. As seen in Figure 3, the cross sections of both reactions display strong energy 

dependence as they decrease roughly as 1/v, where v is the neutron velocity.  

 

Figure 3.  Log-log plot of neutron absorption or scattering cross sections for  
four neutron detection process vs. neutron energy, from [9].  
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Because charged particles, such as alphas, interact with the Coulomb fields of the 

crystal atoms, they have a much larger linear energy transfer (LET), making direct 

detection much easier than that of gamma emissions. However, the probability of any 

neutron-induced reaction falls off quickly with increasing neutron energy (as shown in 

the right hand side of the figure above) limiting neutron detection via absorption at the 

keV energy level.  

2. Neutron Scattering  

Neutron scattering, unlike absorption, changes the energy and direction of the 

neutron without altering the proton and neutron number of the nucleus. This type of 

interaction is further divided into elastic and inelastic scattering. Elastic scattering is a 

collision in which the incoming neutron transfers a fraction of its kinetic energy to the 

target nuclei, yet there is a conservation of kinetic energy within the two-particle system. 

The average energy loss by the neutron during this collision is given by 

 
 2

2
'

1
avg

EA
E

A



  (7) 

where E is the incident kinetic energy of the neutron and A is the atomic mass of the 

nuclei [8]. This relation reveals that less massive (lighter) nuclei are considerably more 

effective at moderating, or slowing down, neutrons. This elastic process results in the 

previously at rest nucleus now traveling through the surrounding matter as a heavy 

charged particle with high LET, which can be detected. 

At sufficiently high neutron energies, inelastic scattering can take place. In this 

case, the kinetic energy of the neutron and nucleus is not conserved, but rather some of 

the neutron energy is expended in exciting the nucleus. Almost immediately, the recoil 

nucleus de-excites back down the ground state and that energy is converted into gamma 

radiation. For inelastic scattering to be possible, the kinetic energy of the incoming 

neutron must be large enough to bring the nucleus to an excited state. This so called 

threshold energy, thE , depends on several factors, including the atomic number Z and 

density of possible excitation levels of the target nuclei, but is typically above 1 MeV. 
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Figure 4 displays the Z dependence of inelastic scattering cross sections, along with that 

of the total scattering cross section. At 4–7 MeV, inelastic scattering is roughly 35%–

45% of the all interactions, depending on the atomic number of target nuclei. Figure 4 is 

simplified in the sense that each individual isotope actually has 10s of possible inelastic 

reactions, each with a different neutron threshold and different gamma emissions that 

correspond to distinct excited nuclear states. Due to the complexity related to the energy 

levels of the nucleus, there is no simple expression for average energy loss as was shown 

with elastic scattering, but the general effect is higher energy loss by the neutron [8].  

 

Figure 4.  Cross section of total interactions (top line) and inelastic  
scattering (bottom 2 lines) of various elements vs. atomic number,  

at neutron energy of 7, 5, and 4 MeV, from [6].  

A typical method of fast neutron detection is based on elastic scattering, called 

proton recoil detectors. In these detectors, inelastic scattering serves the role of 

moderating high energy neutron to such an energy at which detection via elastic 

scattering can take place, but the accompanying secondary radiation from inelastic 

scattering is seen as unwanted complication in the detector response [10, pp. 56, 553]. 

The proposed method of employing heavy inorganic scintillators, however, utilizes 

inelastic scattering within the crystals to more directly detect fast neutrons, removing the 

requirement for moderation. The advantages are an immediate response and increased 

efficiency with high-Zeff crystals.  
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C. SCINTILLATION THEORY  

Scintillation is the process in which a scintillator material stimulated by ionizing 

radiation gives off energy in the form of light emission. This process in inorganic 

crystals, known as luminescence, is based on the energy states of the crystalline structure 

of the material. Each atom or molecule in an inorganic crystal lattice has an electronic 

system of discrete energy levels governed by Schrödinger’s equation resulting in a series 

of energy bands for the bulk material, as shown in Figure 5 [9, pp.68–70]. Because of the 

quantum mechanical nature of these electrons, groups of energy states, or bands, are 

“forbidden” in the sense that they cannot be occupied by a charge carrier. Conversely, 

electrons within an allowed energy state moves freely within that state. 

 

Figure 5.  Energy band structure of ideal insulating crystal, from [9]. 

The highest band of completely filled states is referred to as the “valence band.” 

Upon perturbation of this valence band, electrons can become excited into the 

“conduction band,” but must overcome the energy band gap gE  of the system to do so. 
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Since a positively charged “hole” is left in the valence band, this process creates an 

electron-hole pair. Sometimes, the electron-hole pair remains bound, creating what is 

known as an exciton. Electrons promoted to the exciton band are free to move in the 

lattice crystal, but full ionization has not occurred and therefore they carry no net charge 

[9]. When electrons or excitons drop from their excited bands back to the valence band 

and energy in the form of a photon is emitted, scintillation has occurred (Figure 6). 

 

Figure 6.  Scintillation, quenching, and trapping processes in  
an inorganic crystal structure. from [12].  

1. Activators and Fast Component 

Electrons (or excitons) in the conduction (or exciton) band typically undergo one 

or more of three main processes: luminescence, quenching, or trapping. While 

luminescence, or scintillation, is the desired response of the material, it is a highly 

inefficient process in most pure crystals. Additionally, it is common for energy bandgaps 

to be so large that the emitted photon is outside of the visible range [10, p. 232]. To 

overcome this and increase luminescence probability, small concentrations of impurities, 

called activators, are added to the crystals, as in the case of the LGSO:Ce and LUAG:Ce 

crystals in this study. Activators create intermediate discrete energy levels within the 
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forbidden band from which the electrons/excitons can de-excite to the valence band. Two 

things are required for these intermediate excitation states, known as “activation centers 

(shown in Figure 6): the capture of an electron from the conduction band and the capture 

of hole from the valence band [12]. This can happen by the recombination of an electron 

and a hole or the simultaneous capture of an exciton from the exciton band [9, p. 71]. 

These excited states have half-lives typically on the order of 50–500 ns, resulting in the 

fast component of response of inorganic scintillators [10]. Furthermore, the energy band 

gap from activation centers is smaller than that of the forbidden gap, and thus the photon 

emitted during relaxation is more likely to be in the visible range.  

2. Trapping, Slow Component, and Quenching  

Trapping occurs as a result of intermediate metastable levels below the 

conduction band due to defects and disturbances in the crystal lattice [9, pp. 72–73]. 

These traps can capture electrons from the conduction band, preventing them from 

dropping back to the valence band through scintillation. Instead, electrons/excitons in 

traps can receive additional excitation energy and move up to the conduction band again. 

This is often done via thermal excitation. By moving back into the conduction band, the 

electron regains the opportunity to de-excite to the ground state. This trapping process 

can create a significant delay in the scintillation of the material, resulting in a slow 

component of light, called phosphorescence, depicted in Figure 7 [10, pp. 231–233], [12].   
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Figure 7.  The total relaxation of luminescent crystal shown as sum of slow  
and fast exponential decay, from [11].  

Quenching is the third process undergone by electrons in the conduction band. 

Not all electrons in traps are re-excited to the conduction band and not all electrons in 

activation centers result in scintillation. Some excitation states within the forbidden band 

have a sufficiently small energy bandgap to the ground state that the electron may de-

excite in radiationless transitions, called quenching [10]. Quenching dissipates the excess 

energy thermally, competing with luminescent transitions that are useful in detection. 

Luminescence quantum efficiency is, therefore, given by  

 0  
   

f

f i

k
q

k k



  (8) 

where fk  and ik  are the relative probabilities of emission and of quenching, respectively, 

[9, p. 73–73]. Crystals with high quenching probability will have extremely low 

luminescence quantum efficiency and, thus, low light yield.  
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III. COMPUTATIONAL THEORY: MONTE CARLO N-
PARTICLE 

The method of simulation in this research is the Monte Carlo N-Particle radiation 

transport code developed at Los Alamos National Lab in Los Alamos, NM. MCNP is 

described as a “general-purpose, continuous-energy, generalized-geometry, time-

dependent” transport code that can be used in several modes to track neutrons, photons, 

electrons, or various combinations of the three [7]. This chapter will provide a brief 

discussion of the computational theory and specific features of this code.  

A. MONTE CARLO METHOD  

Monte Carlo is a probabilistic approach to simulation that infers a solution by 

applying random numbers in such a way that they directly simulate physical random 

processes [12, p. 2]. Therefore, a Monte Carlo calculation is a sequence of random 

events, each with a distinct probability. In highly complex problems, such as radiation 

transport, a wide range of factors influence the outcome of random events; these are 

known as composite events. One example of this complexity is, as the simulation 

evolves, the code must account for the interdependence of the probabilities of all random 

events. In such events, assigning a numerical probability to each possible outcome is not 

useful [13, p. 9–10]. Sophisticated Monte Carlo methods, therefore, introduce random 

variables which have associated multivariable distributions in order to more accurately 

characterize the complexity of composite events [12, pp. 10–15]. Probability distributions 

can be thought of as mathematical descriptions of the dice being rolled in a random event. 

They encompass the factors influencing the outcome of the event. Monte Carlo methods 

use the random variables drawn from probability distributions to approximate an integral 

[12, p 31].  

Due to the probabilistic nature of the interaction between radiation and materials, 

Monte Carlo is an appropriate tool for simulating such events. Unlike deterministic 

transport methods, which solve a transport equation for the average particle, the Monte 

Carlo method tracks individual simulated particles from collision to collision and tallies 
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some aspect of their average behavior [7, p. 1.2]. The random history of each particle is 

governed by rules (derived from physics) and probability (derived from cross-section 

data) to determine number, locations, and nature of interactions that occur [6, p. 1.3].  

Figure 8 shows the history of a neutron as it passes through a fissionable material. 

As the incident neutron interacts with the material, particles are created, lost, or scattered 

at each numbered event. Created particles are recorded, banked, and later tracked through 

random sampling. All particles are tracked until termination, whether through capture, 

annihilation, or leakage from the area under investigation. 

 

Figure 8.  MCNP history of neutron incident on fissionable material  
with numbered events, from [7].  

B. MCNP PHYSICS 

The rules and probabilities governing the random histories in MCNP rely on some 

central concepts and information, including particle weight, particle tracks, and 

interaction data.  



 19

1. Particle Weight 

MCNP models are not exact simulations of physical processes in nature. In each 

model, a distinct number of particles are generated and simulated starting from the 

radiation source, but that number does not represent the number of particles present in 

reality. Rather, one simulated particle in MCNP represents several physical particles all 

being transported with the same random walk. So a MCNP particle representing w 

physical particles has an initial weight of w. While is this not a exact simulation, the 

average statistical behavior of the total number of physical particles is observed by 

multiplying the results of each simulated particle by its corresponding weight [7, p. 2.25]. 

There are several benefits of using particle weight. First, calculating less random walks is 

more computationally efficient. Secondly, having weighted tally contributions in the final 

results allows users to normalize their calculations to various source strengths. Finally, 

this technique allows the code to sample areas of interest in the problem without 

degrading the precision of the results [7, p. 2.25].  

2. Particle Tracks  

Particle tracks characterize each component of a source particle during its entire 

history [7, pp. 2.26]. A track is created for each particle as it leaves the source and keeps 

a record of its behavior. If the particle undergoes some process that requires an additional 

track, like a photon undergoing pair production, the track will split into two, each with a 

half of the original source particle weight. A track can split several times in the history of 

the source particle, as seen in Figure 8, but the weight of all will sum to the original 

particle weight. Particle tracks are necessary for making the tally calculations desired by 

the user. For example, surface estimators use the number of tracks crossing a surface to 

calculate particle flux.  

3. Data Libraries  

Determining the number of collisions experienced by a particle and the nature of 

those collisions requires the nuclear data tables included in the MCNP code package. The 

MCNP data libraries are updated with data from U.S. Evaluated Nuclear Data File 
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(ENDF), which is maintained by the Cross Section Evaluation Working Group 

(CSEWG). MCNP specifically contains data from the ENDF/B library with some 

supplemental data from a few other libraries, including the Lawrence Livermore National 

Laboratory’s Evaluated Nuclear Data Library (ENDL) [7, p. 2.16]. There are 9 classes of 

data tables for MCNP, including continuous-energy neutron interaction data, discrete 

reaction neutron interaction data, continuous-energy photoatomic interaction data, and 

electron interaction data [7, p. 2.14].  

C. TALLIES 

All MCNP simulations automatically give standard summary reports about the 

physics and reliability of the calculations. That report includes general information about 

the creation and loss of tracks, particle activity in each cell, particle activity of each 

nuclide, and particle weight [7, pp. 2.80]. Specific calculations about the behavior of 

particles, however, require the use of tallies. MCNP tallies keep track of a specific 

phenomenon throughout the entire simulation and calculated the desired quantity 

specified by the user. There are seven standard types of tallies, shown in Figure 9, but 

each can be modified, providing for a large variety of calculations. Two of these tallies 

are particularly central to this study and are briefly deliberated in this section. 

 

Figure 9.  Overview of MCNP tallies with description.  
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1. Cell Flux Tally (F4) 

All space within a MCNP model is inside of user-defined cells, which are 

delineated by geometric surfaces. The F4 tally uses the track lengths in a cell to calculate 

the average particle flux in that cell (particles/ 2cm ). The theoretical integral representing 

this tally is   

1
4 (r, E, t)

i jE t

F dE dt dV
V

   


 

where V is the cell volume and (r,E, t)


 is the scalar flux for a particular position, 

energy, and time [7, pp. 2.85]. However, the scalar flux can be thought of as the particle 

velocity v times the density of particles a point N,  

(r, E, t) (r, E, t).vN 
 

 

Furthermore, defining differential track length to be  

ds vdt  

gives an average particle flux of  [7, pp. 2.85–86]  

1
(r,E, t)V dE dV ds N

V
    


. 

(r,E, t)N ds


 can be thought of as a track length density, so the entire triple integral is 

approximated by a weighted sum of all the particle tracks in the cell with volume V.  

2. Tally Multiplier Card (FM)  

One way to modify an MCNP tally is with a FM card. FM cards convert the 

quantity of a tally into a value of different units. For example, the user can apply an FM 

card to convert a neutron flux tally (particles/ 2cm ) into a calculation of total inelastic 

scattering events within that cell. FM cards can convert F1, F2, F4, and F5 tallies by 

multiplying them by continuous-energy data from the cross sections’ libraries. The 

quantity calculated for such modified tallies is  

( ) ( ) ,mC E R E dE  
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where ( )E  is the energy-dependent fluence (particles/ 2cm ) and ( )R E  is the 

continuous-energy response function from the nuclear data tables [7, pp 3.99–101].  

3. Energy Deposition Tally (F6) 

The F6 tally is a track length flux tally (F4) modified to tally the amount of 

energy deposited to the material by the incident particles (MeV/g). Energy deposition 

calculations can also be done using a F4 tally and with the proper FM card. For each F6 

tally, MCNP uses a heating function, H(E), from the data libraries to calculate the amount 

of energy released during particle collisions. The heating function for neutron radiation is 

defined as  

 , ,( ) (E)[ ( ) ( )],i i out i i
i

H E E p E E Q E E      

where ( )ip E  is the energy-dependent probability of reaction i, , ( )i outE E  is average 

exiting neutron energy, iQ  is the Q-value for the reaction, and , ( )iE E  is the average 

exiting gamma energy for the reaction [7, pp. 1.87–89]. The index i iterates over all 

possible neutron interactions for each collision. The heating function for photons has a 

similar structure, where i iterates over Compton scattering, pair production, and 

photoelectric absorption.  
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IV.  GAMMA RADIATION 

Because fissile materials are sources of both neutrons and gamma rays, increased 

detection sensitivity for such material can be achieved by systems that can detect both 

forms of radiation [14]. Therefore, the initial investigation of the crystal set aims at 

getting a more robust understanding of the gamma-crystal interactions discussed 

previously in this paper (seen in Figure 10). Previous and ongoing experimental study in 

this area includes optical characterization, cathodoluminescence characterization, and 

gamma-induced scintillation. The following is the section is meant complement those 

efforts from a computational approach. 

 

Figure 10.  MCNP Cross Section plot of photon cross sections for ZWO: -5 is  
total cross section, -2 is Compton scatter, -3 is photoelectric abs., 

 and -4 is pair production.  

A. INTERACTIONS 

As discussed in the background physics chapter, the three main interactions 

gamma rays have with matter are pair production, photoelectric absorption, and Compton 

scatter. An F4 tally with a reaction multiplier card was used to calculate different 
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interactions that take place when each of the six different crystals (listed in Chapter I) is 

exposed to gamma radiation. Overall, there were very little differences of interactions 

between all of the crystal. As expected, photoelectric absorption dominated the left side 

of the energy spectrum, especially for energies less than 0.5 MeV.  Compton scattering 

dominated the middle part of the energy spectrum between 0.5 and about 4–5 MeV. In all 

the crystals except YSO, pair production became significant at around 2 MeV, as 

indicated by the ZWO cross sections plot in Figure 10 and shown in the simulated ZWO 

interactions in Figure 12(a) (which is representative of the other five crystals). Only YSO 

deviates from this norm, showing a more gradual rise of pair production at about 4.2 

MeV (Figure 12(b)). All crystals exhibited an exponential decay of total interactions with 

increasing energy. There was little deviation from total number of interaction for all the 

crystals except YSO, which showed about 40% less total number of interactions, as 

shown in Figure 11. This is most strongly influenced by the fact that the density of YSO 

is roughly 40% lower than the average density of the other 6 crystals under study.  

 

Figure 11.  Total number of reactions against energy of incident gamma radiation  
for each crystal. 
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Figure 12.  (a) ZWO reactions from incident gamma spectrum.  
(b) YSO reactions from incident gamma spectrum. 

B. ENERGY DEPOSITION 

An energy deposition tally (F6) was used to see how energy deposition was 

related to specific crystals, interaction types, and incident gamma energy. Initially, a flat 

distribution of gamma emissions from 0 to 7 MeV was used, meaning gamma quanta of 

all energies in that range were equiprobable. This would allow any crystal-specific 

characteristics that might affect energy deposition to be readily identifiable. The only 
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such prominent distinction was a roughly 40% decreases in energy deposition for YSO 

(shown in Figure 13), which is most probably a result of 40% lower density.  

 

Figure 13.  Total energy deposited to each crystal vs. incident gamma energy.  

Comparing Figures 11 and 13 gives an indication what which interactions deposit 

the most energy into the scintillator. Compton scatter makes up the largest percentage  

of gamma interactions in each of these crystals, especially in the middle spectrum of  

1–4 MeV. The largest energy deposits, however, occur at energies less than 0.7 MeV and 

greater than 2 MeV, which are dominated by photoelectric absorption and pair 

production, respectively.  

Simulation of the energy deposition in a gamma-induced scintillation experiment 

was also done [15]. For each crystal, the optical emissions were measured during a  

180-second time interval while exposed to Cobalt 60 and Barium 133 (specifications in 

Table 3). The source was placed directly against the crystal for each measurement. The 

half-life, initial activity, and date of manufacture for each source were used to calculate 
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the number of gamma emissions released at the time of the measurements in 180 seconds. 

The results of the energy deposition calculations for each crystal and each source are 

shown in Table 4. The goal is to acquire photon emission in this setup in photons per 

second for each crystal and divide it by energy deposition over the 180 seconds to get the 

absolute light yield in photons per MeV for each crystal. This is an ongoing effort and 

additional measurements will be are needed to accomplish this in the following weeks.  

Table 3.   Specifications of cobalt and barium sources used  
in crystal measurements at NPS. 

 Co-60 Ba-133 

Original Activity 1 μCi 1 μCi 

Half-life (yrs.) 5.27 10.8 

Energy (MeV) 1.173, 1.333 0.081, 0.276, 0.303, 0.356, 0.384 

Date of manufacture October 2006 October 2007 

Table 4.   Energy deposition calculations for simulation of  
gamma induced scintillation, from [15]. 

crystal  Co‐60 Energy Dep. [MeV]  Ba‐133 Energy Dep. [MeV]  density [g/cm^3] 

BGO  1.58E+05  1.54E+05  7.13 

CWO  1.56E+05  1.37E+05  7.9 

LGSO:Ce  1.40E+05  1.34E+05  7 

LUAG:Ce  1.34E+05  1.21E+05  6.73 

PWO  7.65E+05  2.32E+05  8.28 

YSO:Ce  7.62E+04  4.09E+04  4.44 

ZWO  1.57E+05  1.38E+05  7.87 
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V. NEUTRON RADIATION 

The proposed detection method hinges on internal counting of gamma quanta in 

the energy of range of 10–1000 keV produced as a result of inelastic scattering by heavy 

nuclides in the crystal material [14]. This research is based on the assumption that 

inelastic scattering must be a significant portion of neutron-crystal interactions (seen in 

Figure 14). This section uses MCNP to investigate those interactions.  

 

Figure 14.  MCNP cross section plot for ZWO. -1 is total cross section,  
-3 is elastic scatter, -2 is absorption, 16 is fission, and  

51–55 are inelastic scatter.   

A. INTERACTIONS 

A track length flux tally (F4) with multiplier cards was used to better understand 

the reactions inside the crystal set. The multiplier cards indicate the desired neutron 
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interactions with the chosen material, as shown for the neutron cross section plot for 

ZWO in Figure 14. Notice that elastic scattering accounts for a large percentage (>75%) 

of the total cross section for ZWO at energies below 1 MeV. It is also important to note 

that inelastic scattering only becomes appreciable at around 1 MeV. The total inelastic 

cross section is actually the sum of several individual inelastic cross sections for each 

excited state for a specific nuclide. In Figure 14, cross sections 51–55 are all inelastic 

scattering.   

 

Figure 15.  Neutron interactions from PuBe source incident on CWO.  

The interactions of neutrons emitted by a PuBe source in CWO are shown in 

Figure 15, which is fairly representative of the crystal set (shown below). For each set, 

elastic scattering makes up about 75–85% of the total interactions depending on the 

crystal. Absorption (green curve in Figure 15) does not make up an appreciable 

percentage of the neutron interaction with the given crystals and fission does not occur 

for these materials. Inelastic scatter makes up about 15–25% of the total neutron 

interactions, depending on the crystal. This is in agreement with the inelastic cross 
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section plot discussed in the background physics chapter. From the plot of total inelastic 

scattering for each crystal (Figure 16), little variation in the spread of inelastic scattering 

across the energy spectrum is seen.  

 

Figure 16.  Inelastic scatter of each crystal against neutron energy.  
Lower black line is BGO.  

The biggest deviations from the norm are BGO (lower black line) and YSO:Ce, 

which seem be less likely to experience inelastic scatter at energies below 3.5 MeV.  

YSO overall has fewer interactions than the rest of the set, which includes inelastic 

scattering.  

B. DETECTION EFFICIENCY 

The detectable radiation-matter interactions in a scintillator produce photons 

which are transformed into recordable pulses. If every neutron that enters a crystal 

medium results in a detectable signal, the detection system has 100% neutron counting 
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efficiency [10]. Therefore, for the purposes of this study, detection efficiency will be 

defined as the ratio of recorded pulses to the number of radiation quanta incident on 

crystal medium. All MCNP investigations of detection efficiency in this thesis (plotted in 

Figures 17 and 18) make the assumption that each neutron or gamma collision with the 

scintillator crystal results in a detectable signal (i.e., a recorded pulse), and should, 

therefore, be interpreted as an upper-limited of achievable counting efficiency for a 

detection system with this set of candidate crystals. Similarly, detection efficiency based 

on specific interaction actions, such as inelastic scattering, is also investigated.   

 

Figure 17.  Response curves for (a) BGO, (b) CWO, (c) LGSO:Ce, and  
(d) LUAG:Ce based on the upper limit of detection efficiency  

discussed above.  

The response curves shown in Figures 17 and 18 were calculated by dividing the 

total number of neutrons that experienced a reaction by the total number of neutrons 

entering the crystal medium. The elastic (red) and inelastic (blue) curves represent the 

ratio of total number of neutrons with that specific interaction to the total neutrons 
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entering the crystal. The curves reveal that elastic scattering accounts for almost all of the 

interactions taking place at less than 1 MeV. This is in agreement with the neutron cross 

section plots, as discussed earlier. For most of the crystal, inelastic scattering rises 

significantly around 1 MeV and falls off around 10 MeV. YSO is an exception to this as 

that curve does not begin to drop off until around 12–13 MeV. All tungstate crystals have 

a prominent plateau from about 2-8 MeV. Both crystals containing Lutetium (Lu) have 

sharp rises in inelastic scattering at very low energies.  

 

Figure 18.  Response curves for (e) YSO, (f) PWO, and (g) ZWO based on the  
upper limit of detection efficiency discussed above.  
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VI. DETECTOR MODEL 

A MCNP model of the detector configuration used in experimental investigation 

of the crystals was built and used to assess the achievable fast neutron detection 

efficiency for the candidate set of crystals.  The experimental setup (shown in Figure 19) 

consists of (1) Pu-Be fast neutron source, (2) 10mm x 10mm x 10 mm scintillator crystal, 

(3) R1306 type PMT, (4) gadolinium oxide cylindrical absorber surrounding the crystal 

with thickness of 10 mm, (5) gadolinium oxide lid of cylindrical absorber, (6) lead 

shielding of 40 mm thickness, and (7) lead protection surrounding the source of 4 mm 

thickness.  The middle 40 mm thick lead shield (6) and the 4 mm lead shield around the 

source (7) both served as protection from the contaminant gamma radiation from the 

neutron source that could interference with neutron detection [14]. Various components 

of the configuration were studied, as well as the effectiveness of the experimental setup 

as a whole.  In all simulations, the distance between the Pu-Be source and the scintillator 

crystal was held constant at 200 mm, while other components of the configuration were 

varied.  

 

Figure 19.  Basic experimental set up for crystal experiments in NASU. 
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A. SUPPRESSION OF BACKGROUND GAMMA RADIATION 

Experimental efforts to suppress background radiation were simulated using 

MCNP. In addition to neutron radiation, Pu-Be and other neutron sources emit gamma 

radiation.  The gamma spectra from Pu-Be is specifically a result the following nuclide 

reactions:       

 241 241 237Pu Am Np    (9) 

 9 4 12 *Be He C n     (10) 

 9 4 13 *Be He C    (11)	 

  10 10 *,Be n Be  , (12) 

which emit 59.54 keV, 4.43 MeV, 3.68 MeV, and 3.37 MeV gamma quanta, respectively 

[14]. Gamma radiation accompanying neutrons can severely interfere with neutron 

detection because there is no way to differentiate between gamma quanta that result from 

neutron interactions in the crystal and contaminant gamma radiation emitted by the 

neutron source. The goal was to shield the scintillator from contaminant gamma flux in 

the energy range of 30–300 keV without significant shielding of the incoming neutron 

radiation from the Pu-Be source. Previous study has shown experimentally that this 

gamma-background can be sufficient suppressed through passive protection with lead 

shielding [24]. It was shown that suppression of background gamma radiation by a factor 

of 310  could be achieved in the working range of 30–300 keV [14]. 

A simulation of the experiment verified the effectiveness of Pb shielding for the 

suppression of contaminant gamma-background by calculating the energy deposited to 

the crystal at different thickness of Pb shielding. The energy range and Pb shield 

thicknesses investigated were identical to the original study. However, an equiprobable 

distribution of gamma ray emissions in the energy range of 0.3–900 keV was used 

instead of the Pu-Be gamma spectrum. This gave a more complete description of the 

effectiveness of shielding at different energies. Simulation showed that 54 mm of Pb 

shielded the crystal from virtually all gamma radiation, which agrees with previous 

experiment.  
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Figure 20.  (a) Experimental measurements of CWO with low energy PuBe  
gamma spectra with different Pb shield thicknesses. (b) MCNP energy  

deposition calculations in CWO with flat distribution of gamma  
in equivalent energy range.   

A shielding thickness of 40 mm was selected as the optimal thickness for 

minimizing gamma quanta in the relevant energy range without significantly suppressing 

neutron flux. Indeed, simulation showed (in Figure 21) 40 mm Pb shield decreased 

background-gamma energy deposition by almost 100% while only reducing energy 

deposition from neutrons by about 18%. However, 54 mm of Pb reduces the neutron 

energy deposition by almost 30%.  
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Figure 21.  (a) CWO energy deposition from gamma radiation in 0-900 keV with  
Pb shield thickness of 0 mm (black) and 40 mm (blue). (b) CWO energy 

deposition from PuBe neutron source in energy range from 0–12 MeV with Pb 
shields of 0 mm (black) and 40 mm (blue).  

B. MODERATION 

Proposed moderation techniques were also investigated using MCNP. The two 

configurations studied are shown in Figure 22. Figure 22 (a) is identical the basic 

experimental setup described above, except without the gadolinium oxide lid, which was 

used as a thermal neutron absorber. Figure 22 (b) includes the gadolinium oxide lid (5) 

along with a polyethylene moderating cylinder of 65 mm thickness (8) surrounding the 

PuBe source. The effects of the moderating elements can be seen by looking at the energy 

deposited to the crystal with and without those elements. The function of a moderator is 

to bring down the energy of an incident particle in order to make conditions more suitable 

for a desired reaction, like neutron absorption.  

The desired effect for this detector configuration is achieved and is demonstrated, 

to a degree, in the energy deposition results in Figure 23. For all energies above 3 MeV, 

the energy deposited to the crystal was noticeably less for the moderated configuration. 

However, the moderated setup resulted in high energy deposition for energies below 

2.6 MeV. From this process of bringing higher energy neutrons to lower energy neutrons, 

it is reasonable to infer that a percentage of higher energy neutrons that would likely pass 
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through the crystal without interaction would be brought to energies more optimal for 

interaction with the use of this moderation configuration.  

 

 

Figure 22.  (a) experimental setup without moderation. (b) experimental setup  
with 8–polyethylene moderator around source and 5–gadolinium oxide lid.  
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Figure 23.  Energy deposition in CWO by PuBe neutrons with (blue) and  
without (black) moderation. 

Previous experiment with with a slightly different set of crystals determined fast 

neutron detection efficiency through internal counting of gamma-quanta that result from 

inelastic scattering (n,n’ ) with energies of 10–1000 keV [14]. Results (Figure 24) 

reported a linearly dependent relationship between detection efficiency and effective 

atomic number of the scintillator crystal. The study also showed a steeper trend of 

increasing detection efficiency of fast and slow neutrons with effective atomic number 

than with that of only fast neutrons, indicating their moderation technique was more 

effective with crystals of higher Zeff. Those experiments indicated detection efficiencies 

of both fast and slow neutrons up to 70–80%.  
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Figure 24.  Detection efficiency of fast and thermal neutron from fluxes from  
PuBe source measured by inelastic scattering at ISM,  

Ukraine, from [14].  

Simulation of the crystals in this study, along with NaI:Ti, CsI:Ti, LiI:Eu, and 

GSO for completeness, showed a similar increases in detection efficiency with effective 

atomic number (Figure 25). The model also showed an overall increase of detection 

efficiency with the moderated configuration, as seen in experiments. Simulated efficiency 

plotted against the product of Zeff and crystal density (Figure 26) revealed a slightly 

more linear relationship, which indicates a significant contribution of crystal density to 

detection efficiency. 
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Figure 25.  MCNP approximation of detection efficiency for several inorganic  
scintillator crystals with (red) and without (blue) moderation.  

However, the significant increase in slope of the fast and slow neutron detection 

efficiency trend was not seen in this model. Neither did detection of fast and thermal 

neutron go above 25% for the configurations proposed. A contributing factor to these 

discrepancies could be differences in exact moderator density or geometry. Diagrams of 

experimental setups were followed closely in the creation of the MCNP model geometry. 

However, these details, and others, were not listed, which leaves room for deviation from 

the original configuration.  



 43

 

Figure 26.  Calculated efficiency vs. effective atomic number  
times density in g/cc.  

C. WHOLE SYSTEM  

The basic detector configuration (shown in Figure 19) was modeled and assessed. 

The model used only neutrons from a PuBe source of 77% Pu-239 in the energy range 0-

14 MeV [16]. All crystals had similar behavior for this energy range. BGO demonstrated 

the high detection efficiency for all energies, except below 1 MeV, where CWO was the 

highest (plotted in Figure 27). This agrees with the inelastic scattering interactions seen 

by these crystals in earlier sections of this paper.  
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Figure 27.  Response function of basic detector configuration exposed 
 to PuBe neutron source for each crystal modeled with MCNP. 

The significant spike around 1 MeV in the response curve of each crystal 

accounts for the jump in detection efficiency from fast neutrons only to both fast and 

slow neutrons that was seen in both experimental and computational study. This 

underscores the importance of moderation in the configuration to the overall 

effectiveness of the detection system.  

D. CRYSTAL THICKNESS  

Crystal thickness proved to have a heavy influence on the detection efficiency of 

the crystal set. The potential counting efficiency was approximated, as previously 

discussed, for a PuBe source incident on a CWO crystal of different thicknesses but 

constant width and height dimensions. The results are plotted with the inelastic and 

elastic scatter break down and experimental values (shown in Figure 28). Both simulated 

and experimental data behave similarly in logarithmic growth with crystal thickness up to 
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about 4 cm. The measured efficiency, however, remains roughly constant after 4 cm 

while calculated values continue to grow with decreasing slope.  

 

Figure 28.  Measured detection efficiency with calculated efficiency of  
total interactions, elastic scattering, and inelastic scattering in CWO with 

increasing crystal thickness. 

Further investigation is required to provide a substantial explanation. However, 

one possible explanation is as follows. Conventional fast neutron detection relies on 

elastic scattering of neutrons and records resulting gamma quanta using a spectrometric 

circuit in the energy range above 3 MeV (to avoid interference from background gamma 

radiation from the neutron source) [5]. In the investigation of this novel method of 

neutron detection based on inelastic scattering, however, the working energy range of 

photon detection in these experiments was selected to be 0.02 to 0.3 MeV.  This method 

of internal gamma counting as a form of neutron detection relies on the assumption that 

80% of the absorbed neutron flux energy is reemitted in the form of gamma radiation [5].  

This seems, to some extent, a reliable assumption for a certain range of crystal 

thicknesses, based on the logarithmic dependence of efficiency up to about 4 cm (for 
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CWO). This may not be the case for inelastic scattering of high energy neutrons that are 

only likely to interact with the crystal when traveling through a thick layer of the 

medium. If that is true, the photon detection window may be missing the gamma quanta 

emitted in such high energy collisions.  

To further demonstrate the effect of scintillator dimensions, detection efficiency 

of the proposed detection system with different crystal volumes was calculated and 

tabulated alongside of measured values (shown in Table 5).  

Table 5.   Detection efficiency approximations at different crystal volumes,  
alongside experimental results. *Some crystals were not tested.  

Crystal 
Efficiency % 
(1 cm x 1 cm) 

Efficiency % 
 (2 cm x 2 cm) 

Efficiency %  
(3 cm x 3 cm)  Experimental Eff. %  

BGO  18.8  35.4  54.5  83 

CWO  21.3  42.6  65.2  46 

LGSO:Ce  17.2  33.2  51.4  * 

LUAG:Ce  22.5  45  57.2  69 

PWO  19.2  37.4  57.5  * 

YSO:Ce  17.6  34.1  52.2  * 

ZWO  23.6  47.5  71.7  70 
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VII. CONCLUSIONS 

The candidate set of heavy oxide and alkali halide crystals have been investigated 

for potential use in neutron and gamma radiation detection systems. Specific experiments 

have been modeled with MCNP in a collaborative effort to gain a better understanding of 

the underlying physics relevant to each configuration. The data presented in this thesis 

addressed the following research objectives.  

1. What radiation-matter interactions occur inside the crystals?  

A computational study of the crystal set helped develop a more complete 

characterization of radiation interactions from both gamma and neutron sources. For 

incident gamma rays, photoelectric effect dominated below 1 MeV, as expected for these 

crystals comprised of heavy nuclei, and resulted in a significant spike in energy 

deposition at energies below 0.7 MeV. Pair production also showed a prominent 

increased in overall number of interactions and energy deposition above 2–3 MeV 

depending on crystal. A key takeaway from this study was that all crystals demonstrated 

very similar behavior when exposed to gamma radiation of energies below 7 MeV, 

except for YSO:Ce. YSO:Ce had significantly (~40%) less total number of reactions and 

energy deposition from the rest of the crystals, probably due to its significantly lower  

density (about 40% less than the average density of the other six).  

When neutrons emitted by a Pu-Be source interacted with these crystals, they did 

so via inelastic scattering 15–27% of the time for the energy range 0–12 MeV. LGSO:Ce 

demonstrated a particularly high percentage of inelastic scattering at almost 28%, while 

interactions in the other crystals were closer to 20% inelastic scatter. The other 73–85% 

of neutron interactions in these crystals was mostly elastic scattering. Neutron absorption 

and interactions resulting in fission did not comprise a significant portion of the total 

reactions for this energy range.   

2. Calculate energy deposition. 

Energy deposited into the crystals by Co-60 and Ba-133 gamma source for each 

crystal in 180 seconds was calculated and tabulated (see Table 4). This was a simulation 
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of gamma-induced scintillation experiments done at NPS. The goal for these energy 

deposition calculations was to better characterize the physical properties of the crystals. 

One component of achieving this was combining the energy deposition calculations with 

optical output measurements to get the absolute light yield (in photons/MeV) for each 

crystal. This effort is in process and is expected to be completed in the following weeks. 

3. What components of the proposed detection system optimize detection 
efficiency of a mixed gamma-neutron radiation source? 

A model of the proposed scintillator detection system was created and assessed. 

Various components were investigated as they applied to the overall effectiveness of the 

detector. The method of background gamma ray suppression in the range of 30–300 keV 

through the use of Pb shielding of 40 mm thickness was validated. The effects of the 

proposed moderators were demonstrated in the shift in energy deposition from higher to 

lower energies and an overall increase in detection efficiency. The increase in the slope 

of detection efficiency in the moderated configuration against effective atomic number 

was not seen, however. Further investigation is required. Crystal thickness was shown to 

strongly increased detection efficiency. The projected logarithmic growth of detection 

efficiency with crystal thickness was in agreement MCNP approximations, but 

explanation of the leveling out of measured efficiency after 4 cm requires additional 

research.  

4. What detection efficiency is possible for each of these crystals? 

For each configuration, an estimate of the potential intrinsic efficiency was 

calculated, which can be thought of as an upper limit to the achievable intrinsic counting 

efficiency for each crystal. With the proposed experimental setup drawn from diagrams, 

detection efficiency for neutrons emitted from a PuBe source only reached 17–24%, 

while experimental data suggested detection efficiencies no less than 40%.  

There are several factors that could be contributing to this discrepancy. First, there 

are details of the detector setup used in experiment that are unknown. The two 

components which have the largest potential for affecting the overall performance of the 

detector are the crystal dimensions and moderator details. It was shown that detection 
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efficiency increased strongly with crystal volume, which allowed for simulated 

efficiencies comparable to measured ones. The details of the moderators used have 

potential for greatly affecting detector performance. This is confirmed by the significant 

spike in the response curves at low energies and the ability of the moderator to shift the 

energy of impinging neutrons.  

A. FUTURE RESEARCH 

This model of the candidate crystal set and detection system using MCNP is the 

first computational approach at NPS in this research effort and will hopefully serve as a 

base model on which future efforts can build. A goal for future modeling of these crystals 

should be a full simulation of the scintillation process, from the emission of fast neutrons 

at the source to the collection and detection of photons at the PMT. This will include a 

reliable photon creation in MCNP, which requires a linearity curve that relates energy 

deposition to number of optical photons created. This linearity curve can be obtained 

experimentally with the crystals at NPS.  

This research effort might also benefit from computational study apart from 

MCNP. MCNP simulation of optical emission of scintillators does not account for the 

LET dependence of the neutron-induced recoil nuclei or the difference in electron LET as 

the electrons slow down [17]. An investigation of other methods or codes to simulate the 

delayed response of the scintillator crystals would supplement the MCNP model.  

 



 50

THIS PAGE INTENTIONALLY LEFT BLANK 



 51

LIST OF REFERENCES 

[1]  G. W. Bush, Office of the White House. (Sept. 17, 2002). National Security 
Strategy of the United States of America. [Online]. Available: http://georgewbush-
whitehouse.archives.gov/nsc/nss/2002/nss5.html  

[2] B. W. Bennett and R. A. Love, “Initiatives and challenges in consequence 
management after a WMD attack.” USAF Counter Proliferation Center, Aug. 
2004. http://www.au.af.mil/au/awc/awcgate/cpc-pubs/love.pdf. Accessed April 2, 
2015. 

[3] Department of Defense. Defense Threat Reduction Agency & USSTRATCOM 
Center for Combating WMD. Last modified March 3, 2014. Available: 
http://www.dtra.mil. Accessed April 2, 2015.  

[4] V. D. Ryzhikov et al., “The use of fast and thermal neutron detectors based on 
oxide scintillators in inspection systems for prevention of illegal transportation of 
radioactive substances,” IEEE Transactions on Nuclear Science, vol. 57, no. 5, 
pp. 1–5, Oct. 2010.  

[5] V. D. Ryzhikov et al., “New neutron detectors based on inorganic scintillators 
using inelastic scattering,” in IEEE Nuclear Science Symp., Orlando, FL, 2009, 
pp. 1978–1982. 

[6]  A. V. Bushuev, Experimental Reactor Physics, MIFE (Moscow Institute of 
Physics and Engineering), Moscow, 2008, p. 280. 

[7] X-5 Monte Carlo Team, MCNP- A General Monte Carlo N-Particle Transport 
Code, Version 5. Vol II: User’s Guide. April 24, 2003. Revised 2/1/2008.  

[8]  D. Reilly, N. Ensslin, and H. Smith, Jr., Passive Nondestructive Assay of Nuclear 
Materials (PANDA). Office of Nuclear Regulatory Research. March 1991.  

[9] J. B. Birks, The Theory and Practice of Scintillation Counting. New York: 
Pergamon Press, 1964,  pp. 15–38, 68–76. 

[10] G. Knoll, Radiation Detection and Measurement, 3rd ed. Hoboken, NJ: John 
Wiley & Sons, 2000. pp. 30–57,113–117, 231–247, 505–553. 

[11] K. Krane, Introductory Nuclear Physics. Hoboken, NJ: John Wiley & Sons, 1988, 
pp. 444–476. 

[12] H.-C. Schults-Coulon, “Scintillation detectors: particle detection via 
luminescence.” Kirchhoff Institute of Physics. Available: http://www.kip.uni-
heidelberg.de/~coulon/Lectures/Detectors/Free_PDFs/Lecture4.pdf Accessed 5 
April 2015.  



 52

[13] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods. 1st ed. Boundary 
Row, London: Chapman & Hall. 1964, pp.1–55.  

[14] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol I: Basics. New York: 
John Wiley & Sons, Inc. 1986, pp. 1–71. 

[15] V. D. Ryzhikov et al., “High efficiency method of fast neutron detection by oxide 
scintillators for detection systems of fissionable radioactive 
substances,” Advancements in Nuclear Instrumentation Measurement Methods 
and their Applications (ANIMMA), 2011 2nd International Conference on , vol., 
no., pp.1,7, 6–9 June 2011 

[16] P. R. Rusiecki, “Characterization of heavy oxide inorganic scintillator crystals for 
direct detection of fast neutrons based on inelastic scattering.” NPS. March, 2015. 
pp. 1–30.  

[17] Z. R. Harvey, “Neutron flux and energy characterization of plutonium-berylium 
isotopic neutron source by Monte Carlo simulation with verification by neutron 
activation analysis” (2010). UNLV Theses/Dissertations/Professional 
Papers/capstones. Paper 900. 

[18] T. Goorley. Private communication. September 2014.  

 
  



 53

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 


